

# **LRRK2-induced Neuronal Toxicity**

Yulan Xiong/ Valina Dawson Neuroregeneration and Stem Cell Programs Department of Neurology Institute for Cell Engineering, Johns Hopkins University, School of Medicine 733 N. Broadway, BRB 732 Baltimore, Maryland 21205

# Introduction:

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as a unambiguous cause of rare autosomal dominant forms of PD. However, the pathogenic role and associated biochemical pathways responsible for LRRK2-linked disease still remains unclear. To investigate the neurotoxicity induced by LRRK2, we transfected LRRK2 WT and G2019S mutant into mouse cortical neuronal culture by METAFECTENE EASY reagents.

# Materials and methods:

Transfect reagent: Metafectene EASY and Metafectene SI (Biontex, Munich, Germany); Plasmids: pcDNA3.1/MYC-HIS-LRRK2 –WT/G2019S, pcDNA3.1-eGFP; Cells: mouse cortical neuronal culture

# Experimental procedures / transfection protocol:

- 1). The mouse cortical neuronal culture grew on 24-well plates for one week.
- 2). Dilute 10XEASY buffer to 1X
- 3). Add 5ul METAFECTENE EASY in 100ul 1XEASY buffer and mix gently
- 4). Add 2.2ug DNA (2ug LRRK2, 0.2ug eGFP) into above mix, incubate for 15 mins at RT
- 5). Change the culture media to OPTI-MEM media (400ul per 24-well)
- 6). Add the mix from step 4 to the culture
- 7). Chang the media to neuronal growth media next morning
- 8). The viability of eGFP positive neurons using TUNEL staining or nuclear

condensation/fragmentation by fluorescence microscopy were quantified to assess the neuronal toxicity.

# Results and discussion:

Transfection of 7-days old cortical neurons using Metafectene EASY resulted in a transfection efficiency around 1-2%, which is similar to the efficiency of Lipofectamine 2000 (Invitrogen, data not shown)

# Conclusion / summary:

Transfection efficiency was as high as compared to results achieved using transfection reagents of other manufacturers. We didn't see obvious decreased cytotoxicity compared to other transfection reagents.

| Арр                                                                              | endix: Tal | bles and                                  | d/or figu | res:   |                     |                      |                     |            |          |
|----------------------------------------------------------------------------------|------------|-------------------------------------------|-----------|--------|---------------------|----------------------|---------------------|------------|----------|
| Cell<br>code                                                                     | Primary    | Class                                     | Species   | Organ  | Reagent             | Growth<br>Properties | Genetic<br>Material | Efficiency | Toxicity |
| Neurons                                                                          | s yes      | Mam-<br>malia                             | mouse     | cortex | METAFECTENE<br>EASY | adherent             | Plasmid             | 1-2%       | low      |
|                                                                                  |            | No | X         |        |                     |                      |                     |            |          |
|                                                                                  | Empty ve   | ctor+eG                                   | FP        | LR     | RK2-WT+eGFP         | LRRK2-0              | G2019S+e            | GFP        |          |
| Figure 1   PPK2 induced neuronal toxicity 7-days old mouse cortical neurons were |            |                                           |           |        |                     |                      |                     |            |          |

**Figure 1. LRRK2 induced neuronal toxicity**. 7-days old mouse cortical neurons were co-transfected with LRRK2 and eGFP (10:1 ratio) by Metafectene Easy reagent. Viability was analyzed at 48 hrs post-transfection (DIV 9) with non-viable neurons exhibiting obvious neurite process and/or nuclear fragmentation. Representative images are showing eGFP postive neurons.